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Dipole solutions for viscous gravity currents:
theory and experiments
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We describe the gravity-driven flow of a viscous fluid in a semi-infinite porous layer,
x > 0, from which fluid can drain freely at x = 0. New experiments using a Hele-Shaw
cell confirm that when the base of the layer is impermeable the motion of the current is
self-similar and the dipole moment of the flow is conserved, as proposed theoretically
by Barenblatt & Zel’dovich (1957). We extend the model to allow fluid to drain through
the base of the porous layer into a thin horizontal layer of lower permeability. In
this case we predict that the dipole moment of the current decays exponentially
with time. At early times we find that the loss of fluid from the gravity current
in the high-permeability layer is dominated by the draining at x = 0, whereas at
long times, the gravity-driven leakage into the underlying low-permeability layer is
dominant. We successfully compare these analytic solutions for such draining currents
with further laboratory experiments in which fluid drains from the end and through
the base of a Hele-Shaw cell. We discuss the implications of these results for the
dispersal of chemicals or pollutants injected into a layered porous rock.

1. Introduction
Gravity-driven flows in porous rocks arise in a number of engineering and natural

situations in which fluid of one density invades a porous layer saturated with fluid
of a different density. Important examples arise in hydrocarbon reservoirs in which
chemical-laden water is injected to sweep oil or to dissolve precipitate and increase
the permeability of the rock. If a finite volume of fluid is injected into the reservoir
then, following the injection period, the flow spreads under the influence of gravity.
In studying such flows, we are especially interested in the dispersal of fluid through
the formation. Many reservoirs involve complex layering. In such situations fluids
tend to spread laterally along high-permeability layers and then gradually drain into
adjacent low-permeability layers (Pritchard, Woods & Hogg 2001; Pritchard & Hogg
2002). However once the flow is driven by gravity, some of the injected fluid may flow
back and drain into the source well, thereby being lost from the system (figure 1).
An analogous flow regime also develops with groundwater flow through fractured
porous rocks: at periods of high water a fluid may invade the porous matrix from
a fracture and subsequently spread through the formation; as the water level drops
the fluid may be able to drain back into the source fracture as it continues to spread
through the porous rock.

The geometry of such flows may be two-dimensional if fluid spreads from a near
horizontal well or from a fracture into the neighbouring formation, whereas the flow
may be axisymmetric if it spreads rapidly from a localized vertical well. Here we
focus on the two-dimensional case, corresponding to injection from a horizontal well
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Figure 1. Diagram showing a fluid supplied to a stratified rock from a well; fluid moves
along high-permeability layers, slowly draining into adjacent low-permeability layers and also
draining back into the well bore.

or fracture. We neglect the effect of capillary forces, as is appropriate for miscible
displacement or large-scale immiscible flows.

First we examine the case in which there is no draining within the formation. For the
release of a finite volume of fluid, Barenblatt & Zel’dovich (1957) (see also the book
Barenblatt, Entov & Ryzhik 1990) showed that as the fluid propagates into the
medium x > 0 and drains at x = 0 then, if the current has free surface of height
h(x, t) and horizontal extent L(t), the dipole moment Q, defined by

Q =

∫ L(t)

0

xh(x, t) dx, (1.1)

remains constant. This constraint leads to a class of similarity solution for such flows
and we build on this work in the present paper. We present a series of new laboratory
experiments which test relation (1.1), and the similarity solution of Barenblatt &
Zel’dovich (1957). We then extend the model and experiments to include the effects of
draining through the base of the layer. We examine the balance between the loss
of fluid at the source x = 0, and the draining into the adjacent low-permeability
structure. We develop some new analytic solutions and test these with new laboratory
experiments. Our results show that the loss of fluid at the source region leads to a
substantial difference in the intrusion distance of the current and in the amount of fluid
transferred to the formation compared to the case where there is no draining at the
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Figure 2. Diagram showing the spreading of a mound of fluid over an impermeable base
through a medium of permeability K with free draining at x = 0.

source (Pritchard et al. 2001). We generalize this modelling approach to describe
the motion of a two-dimensional free-surface viscous gravity current. Again we
present some analytic solutions and verify these with laboratory experiments.

2. Dipole solution for a gravity current in a porous medium
2.1. Theory

The gravity-driven motion of a mound of viscous fluid which spreads along the
horizontal impermeable base of a porous medium (see figure 2) under the assumption
that it is relatively thin (pressure in the fluid is assumed to be hydrostatic) and that
the Reynolds number of the flow is small, may be described by the equation

ht = Ω(hhx)x, (2.1)

where h = h(x, t) is the height of the free surface of the mound at a distance x from
the origin and time t , and where

Ω =
K�ρg

µ
. (2.2)

Here �ρ is the density difference between the current and the ambient fluid in
the permeable rock, K is the permeability, and µ the viscosity of the fluid. This
equation is well-studied in the context of porous media and is due to Boussinesq
(1903). Derivations and applications of equation (2.1) can be found in the books
by Bear (1972), Turcotte & Schubert (1982), Barenblatt et al. (1990), and others on
groundwater flow.

We now examine the motion of a finite release of fluid in the region x > 0, subject
to the constraint that the free-surface height h = 0 at x = 0 while the volume flux
hhx takes some finite value at x = 0. For this problem Barenblatt & Zel’dovich (1957)
showed that the dipole moment Q defined by

Q =

∫ L(t)

0

xh(x, t) dx, (2.3)

is invariant, where L(t) is the lateral extent of the current, and h(L) = 0. This can
be shown by combining equation (2.1) with the additional assumption that hx is



94 S. E. King and A. W. Woods

non-singular at x = L as follows:

d

dt

∫ L

0

xh(x, t) dx = LL̇h(L, t) + [x(hhx)]
L
0 −

[
1
2
h2

]L

0
= 0. (2.4)

Since there are no external length scales associated with this flow the system admits
self-similar solutions of the form

h = Btβf (η), (2.5)

where η = x/Atγ is the non-dimensional similarity variable, and A, B are constants
to be found by dimensional analysis. By substitution into equation (2.1), and use of
the constraint (2.3) the solution is found to be

h(x, t) =

(
Q

Ω

)1/2

t−1/2 1
6

(
(40)3/8η1/2 − η2

)
,

η(x, t) =
x

(QΩ)1/4t1/4
,




(2.6)

as was presented by Barenblatt & Zel’dovich (1957) in the context of the flooding and
subsequent draining of a porous medium by groundwater. An alternative approach
to this solution is discussed in appendix A.

2.2. Experiments

To test this theoretical model we conducted some new experiments in a Hele-Shaw
cell. This is an analogue for flow in a fracture and also for two-dimensional flow in a
porous layer. The cell used was 3 mm wide, 15 cm high and 1 m long and was sealed
at the base. A lock region was set up at one end of the cell, bounded by two vertical
lock gates which separated the source fluid from the main part of the Hele-Shaw cell
and from its end. At the start of the experiment both lock gates were removed. The
fluid was free to spread along the lower boundary and to drain freely from the open
end of the cell (figure 3). The length and depth of this initial block of fluid was varied
between experiments.

The working fluid was golden syrup of viscosity approximately 60 Pa s so that
the current had typical Reynolds number 10−4 – 10−5. During the experiment, we
measured the lateral extent and shape of the current, and also the mass of fluid
draining from the origin. The dipole moment Q was calculated at a series of times
during the experiment by digitizing the shape of the current and calculating expression
(2.3) using the trapezium rule. The results of this for a typical experiment are shown
in figure 4. The dipole moment converges to a constant as the flow adjusts to the
self-similar solution (figure 4) as predicted by the theoretical work of Kamin &
Vazquez (1991). Figure 5 shows that the run-out distance of the current as measured
in the experiments scales as L ∼ (QΩ)1/4t1/4, as predicted by the similarity solution
equation (2.6). In these two experiments, the initial aspect ratios of the fluid behind
the lock gate h0/L0, were 1 and 2.7. Figure 6 illustrates the shape of the current in
similarity space at four different times for the initial aspect ratio 1. This is in excellent
accord with the analytical self-similar solution (2.6). Finally figure 7 shows the mass
of fluid M(t) which drains from the current at x = 0, and this is compared with the
theoretical prediction, M(t) ∼ t−1/4.

In figures 4–7 the experimental observations are described well by the self-similar
solution (2.6), confirming that this provides a very accurate description of the flow.
The solution describes the experimental flow at intermediate times (Barenblatt 1996)
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Figure 3. Photograph showing the experimental apparatus and the current slumping along
the base of the Hele-Shaw cell.

once the fluid has evolved from the initial condition of the experiment to the self-
similar solution, but before the current is strongly influenced by friction at the base of
the cell. At such a late stage equation (2.1) no longer provides an accurate description
of the flow.

3. Dipole gravity current which drains into a lower-permeability layer beneath
3.1. Theory

We now consider the effect of replacing the horizontal impermeable lower boundary
in the flow discussed in § 2 with a thin horizontal layer of smaller permeability
(see figure 8). This flow configuration may occur naturally if fluid were to invade a
stratified rock. We focus on the case in which the layer of lower permeability has
thickness b, which is small in relation to the depth of the current (h � b). Assuming
that the pressure relative to hydrostatic falls to zero on the other side of the low-
permeability layer, then the evolution equation takes the approximate form (Pritchard
et al. 2001)

ht = Ω(hhx)x − λh, (3.1)

where λ = ΩKb/Kb, Kb the permeability of the lower layer and b its height.
In § 2 we saw that the dipole moment of the height of the free surface of the flow

remained constant. Now the rate of change of the dipole moment with time is given
by

d

dt

∫ L

0

xh dx = LL̇h(L, t) + [xhhx]
L
0 −

∫ L

0

λxh dx = −λ

∫ L

0

xh dx. (3.2)
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Figure 4. Plot of the evolution of the dipole moment of an experimental current with time,
together with a straight line demonstrating the convergence of the dipole moment to a constant.
The measurements of the dipole moment are shown with 10% error bars.
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Figure 5. The log of the measured run-out distance of two currents (�, �) against log of
time. Best fit lines give exponents for time dependence of 0.26 and 0.25, compared with the
theoretical value 0.25.
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Figure 6. Measured shape of the current compared with the theoretical shape at times
t = 8, 18, 28, 36 s (�, �, �, × respectively) for one of the experiments.
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Figure 7. A typical plot of the mass of fluid M(t) drained from the origin during an
experiment (�) plotted against t−1/4, so that time increases towards the origin.
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Figure 8. Diagram showing the spreading of a mound of fluid over a thin permeable layer
with drainage into the layer and free draining at x = 0, with the volume fluxes through the
lower layer ql , and through the origin q0, marked.

Equation (3.2) implies that the dipole moment decays exponentially with time. By
using the transform

H = h exp (λt), τ =
1 − exp (−λt)

λ
, (3.3)

equation (3.1) may be re-expressed in the form

Hτ = Ω(HHx)x, (3.4)

and so it may be seen that the motion of the current is described by a solution of
the form presented in § 2, but now accounting for a slowly evolving dipole moment.
This transform was first suggested by Gurtin & MacCamy (1977) in the context of
the diffusion of biological populations. Transforming back to the original coordinates
we now obtain the solution

h =

(
Q

Ω

)1/2 (
1 − exp (λt)

λ

)−1/2

f (η) exp (−λt), (3.5)

f (η) = 1
6

(
(40)3/8η1/2 − η2

)
, (3.6)

where the transformed similarity variable is defined by

η =
x

(QΩ)1/4

(
1 − exp (−λt)

λ

)1/4
. (3.7)

This solution is valid for h � b, which in turn requires

b � Q1/3, t >
1

λ
ln

(
b

Q1/3

)
. (3.8)

Combining (3.5) and (3.7) it is seen that Q = Q0 exp (−λt) as expected.
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Figure 9. Photograph showing the experimental apparatus and the current slumping along
the base of the Hele-Shaw cell whilst draining through a permeable lower boundary.

3.2. Experiments

We have conducted a series of experiments to compare with the theoretical work
presented in § 3.1. The experimental apparatus involves the same Hele-Shaw cell as
described in § 2.2 except that the width of the cell was increased to 4 mm, and the
lower 2 cm of the cell was now held open with a gap of 1 mm. The cell was suspended
above the laboratory bench by two jacks so that the fluid could drain out at the base
(figure 9). This serves as a model of a layered permeable medium. As in § 2, the
working fluid was golden syrup, and in each experiment fluid was released from a
rectangular initial shape confined between two removable lock gates.

Figure 10 shows values of the dipole moment calculated from the current profiles
taken at a series of times in a typical experiment. These measurements were carried
out in the same way as those in § 2.2. The data demonstrate that the dipole moment
decays exponentially as predicted by equation (3.2).

In figure 11 we illustrate the variation of the fourth power of the lateral extent
of the current, L4, as a function of exp (−λt) as derived from the experimental
measurement of L and t . The data collapse onto a straight line as predicted by
the model until exp (−λt) ≈ 0.1, which corresponds to a time t = 100 s. For longer
times the experimental observations diverge from the theoretical model because the
depth of the current has decreased towards the thickness of the low-permeability
layer. Subsequently, the low-permeability layer is relatively deep compared to the
current, the condition h � b (§ 3.1) is violated, and the motion is no longer described
by equation (3.1). This late stage of the flow may be described using the approach
of Acton, Huppert & Worster (2001) and Pritchard & Hogg (2002). In figure 12
we compare the shape of the current at t = 80 s with the theoretical prediction of
equation (3.5), and obtain very good agreement.
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Figure 10. Plot of the evolution of the measured dipole moment of a draining experimental
current with time, together with a straight line demonstrating that the dipole moment decays
exponentially with time.
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Figure 11. The measured run-out distance of three dipole experiments which drain through
a lower layer (�, �, �). Plotted is L4 against exp (−λt); initially the data lie along a straight
line so that L4 varies linearly with exp (−λt) as predicted. Time increases towards the origin
in this plot.
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Figure 12. The typical shape of the current for one experiment at time t = 80 (�) which
corresponds to exp (−λt) = 0.16. The theoretical shape function for the current is shown for
comparison.

3.3. Loss of fluid to the layer below and to the well

The solutions presented in § 3.1 have implications for the dispersal of pollutants in
an aquifer, or the injection of chemical treatments into an oil reservoir. In these
situations it may be possible for fluid to drain into a lower-permeability layer in the
rock and to drain back at the source. It is of considerable interest in these cases to
have some knowledge of the fraction of injected fluid which remains in the porous
layer. To that end we now examine the volume flux of fluid from the current. First,
the flux into the source q0(t) is defined by

q0(t) = h
∂h

∂x

∣∣∣∣
0

; (3.9)

secondly the flux into the underlying porous layer ql(t) as defined by

ql(t) =

∫ L(t)

0

λh dx. (3.10)

These two fluxes are shown in figure 8, and are given by the expressions

q0 = − 1

72
(40)3/4

(
Q3

Ω

)1/4 (
1 − exp (−λt)

λ

)−5/4

exp (−2λt), (3.11)

ql = − 1

18
(40)3/4

(
Q3

Ω

)1/4 (
1 − exp (−λt)

λ

)−1/4

λ exp (−λt). (3.12)

Comparison of these two equations shows that the drainage back to the source is
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Figure 13. The evolution of the fluxes through the origin (solid) and through the lower layer
(dotted) for the dipole solution which drains through a lower layer.

greater for short times t < (1/λ) ln(5/4), while the loss of fluid into the formation
is dominant at long times. The variations of the fluxes with time are compared in
figure 13.

Using the fluxes (3.11) and (3.12), we can calculate the volumes of fluid supplied by
the current to both the underlying layer and the origin over times t0 < t < ∞. If we
assume that the solution (3.5) applies at time t0 then we may consider the fractions
of fluid supplied to the origin and the underlying layer as a parametric function of t0
and hence of the initial aspect ratio (defined as the maximum height to length of the
current).

Integration of equations (3.11), (3.12) from t = t0 to ∞ yields the expressions for (i)
V0, the volume of fluid which drains back at the origin

V0 =
(40)3/4

72

(
Q3

Ω

)1/4

λ1/4

{
4

λ
(1 − exp (−λt0))

−1/4 exp (−λt0)

+
16

3λ2
− 16

3λ2
(1 − exp (−λt0))

3/4

}
, (3.13)
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and (ii) Vl , the volume of fluid that leaks into the lower layer

Vl =
(40)3/4

18

(
Q3

Ω

)1/4

λ1/4
(

4
3

− 4
3
(1 − exp (−λt0))

3/4
)
. (3.14)

The total volume in the current at time t0, Vt =
∫ L

0
h(x, t0) dx, is given by integrating

equation (3.5) and has value

Vt =
(40)3/4

18

(
Q3

Ω

)1/4 (
1 − exp (−λt0)

λ

)−1/4

exp (−λt0). (3.15)

Combining equations (3.13)–(3.15) we can now find the fraction which leaks into the
lower layer Fl = Vl/Vt and the fraction which drains back to the origin F0 = V0/Vt .
We expect Fl and F0 to be functions of the aspect ratio of the current, h/L, at
time t0 .

To find the aspect ratio of the current at a time t0 we evaluate the maximum
height and length of the current by use of the solution (3.5). At the initial time t0 the
maximum height of the current is given by the solution

h(t0) =

(
Q

Ω

)1/2 (
1 − exp (−λt0)

λ

)−1/2

fmax exp (−λt0), (3.16)

where fmax is the maximum value taken by the shape function f . Similarly the
horizontal extent of the current can be found from the solution,

L(t0) = (QΩ)1/4

(
1 − exp (−λt0)

λ

)1/4

ηend, (3.17)

where ηend is the value of η at the nose of the current at which f = 0 in similarity
variables. This leads to an expression for the aspect ratio h/L:

h

L
(t0) =

(
Q3

Ω

)1/4 (
1 − exp (−λt0)

λ

)−3/4

exp (−λt0)
fmax

ηend

. (3.18)

In figure 14 we plot Fl and F0 as a function of the aspect ratio of the flow. As
the aspect ratio h/L decreases, more of the fluid drains into the formation. However,
even with an aspect ratio of 0.1, 5% of fluid drains back at the source. This result
implies that for effective dispersal of a finite mass of chemical in an aquifer or oil
reservoir system, then the fluid should be supplied over a prolonged period to ensure
that it has a small aspect ratio h/L before the source is cut off.

4. Generalization of the model
4.1. Theory

The solution approach for equation (2.1) also applies to the more general family of
equations

ht = κ(hαhx)x, (4.1)

parameterized by α. This equation describes the flow of a fluid in a number of
different situations. For example the equation with α = 3, describes the flow of
a viscous free-surface gravity current in a two-dimensional channel and this has
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Figure 14. Plot showing the partitioning of the volume of the current to (i) drain back into
the source region (F0 dotted) and (ii) drain into the formation (Fl solid). The figure illustrates
the fractions as a function of the initial aspect ratio (h/L) of the current. λ = 0.3, Ω = 5 and
Q = 5.

been studied in detail (Smith 1969; Didden & Maxworthy 1982; Huppert 1982;
Gratton & Minotti 1990; Diez, Gratton & Gratton 1992). More generally it describes
the situation of a gravity current spreading through a porous medium in which the
permeability varies as

k = k0y
α−1, (4.2)

where y is the vertical axis with origin at the base of the current (Huppert & Woods
1995). This is also equivalent to flow in a Hele-Shaw cell in which the narrow gap
width varies vertically according to the relation

b = b0y
α−1

2 . (4.3)

In the case λ = 0, which corresponds to the case of no loss through the lower
boundary, the dipole moment ∫ L

0

xh(x, t) dx = Q, (4.4)
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is again conserved and so we can pose a solution to the equation of the form

h = Atβf

(
x

Btγ

)
, (4.5)

where x/(Btγ ) is our similarity variable η. Substituting this into equation (4.1) we
find that

h(x, t) = κ− 1
α+1 Q

1
α+1 t− 1

α+1

(
Cη

α
α+1 − α

2(α + 1)
η

2α+2
α+1

)1/α

,

η(x, t) =
x

κ
1

2(α+1) Q
α

2(α+1) t
1

2(α+1)

.




(4.6)

On substitution of equation (4.6) into the integral condition (4.4) we obtain

∫ ηe

0

(
Cη

α
α+1 − α

2(α + 1)
η

2α+2
α+1

)1/α

dη = 1, (4.7)

where ηe is the end point of the current in similarity variables, and is given by

ηe =

(
2C(α + 1)

α

) α+1
α+2

. (4.8)

C may be determined numerically from (4.7) and (4.8) for a given value of α. For
example when α = 3, we find C = 0.7029 to four decimal places.

The equation

ht = κ(hαhx)x − λh, (4.9)

may be solved using a similar method to that in § (3.1); the transform

H = h exp (λt), τ =
1 − exp (−αλt)

αλ
, (4.10)

reduces equation (4.9) to an equation of the form of (4.1) and the above solutions
may then be re-interpreted.

4.2. Experiments

To test the theoretical predictions (4.6) we have conducted some experiments in which
a free-surface viscous flow spreads along a channel x > 0, whilst draining freely from
the impermeable channel base at x = 0. This corresponds to the case α = 3 in the
above theory. We used a small Perspex flume tank of width 20 cm, height 25 cm and
length 1 m. Initially the fluid is held between two adjustable lock gates at the open
end of the flume tank; then both gates are removed so that fluid is free to drain out of
the channel at the open end and spread along the base of the channel. Again we used
golden syrup for these experiments. This is sufficiently viscous to ensure a Reynolds
number Re � 0.1. In each experiment we measure the length of the current, the mass
of fluid drained at x = 0 and the shape of the free surface. In figure 15 we show the
variation of the run-out distance of the three experimental currents characterized by
initial aspect ratios 0.9, 0.4 and 0.5. The aspect ratio is again defined by the ratio of
the initial height to initial length of the fluid held behind the lock gates. All three
sets of data are in good accord with the predictions of the theoretical solutions. The
shape of the second of these currents is plotted in figure 16, compared with shape of
the analytic solution. Finally in figure 17 the mass of fluid M(t) drained at the origin
is plotted for the third experiment. This agrees well with the theoretical prediction
that M(t) ∼ t−1/8.
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Figure 15. Plot showing the log of the run-out distance of three two-dimensional dipole
experiments (�,+, ×) against log of time; the exponents for the run-out are 0.122, 0.118, 0.127
compared with the theoretical value 0.125.
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Figure 16. Measured shape of the current at times t = 30, 420 s (�, �) during one
experiment plotted with the theoretical shape function for comparison.
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Figure 17. The mass of fluid M(t) drained at the origin for one experiment (�) plotted against
t−1/8 along with a best fit line to demonstrate that the mass is a linear function of t−1/8. Time
increases towards the origin in this plot.

5. Summary
We have presented a series of models to describe the gravity-driven flow through

a stratified porous layer, including the effects of drainage at the base of the layer
and back to the origin. Analogue experiments conducted in a Hele-Shaw cell have
confirmed that, for a flow which may drain freely at one end of the cell but with no
draining through its base, then the dipole moment Q

Q =

∫ L(t)

0

xh(x, t) dx, (5.1)

of the flow is conserved, where Q is defined in terms of the height of the free surface
h(x, t) (Barenblatt & Zel’dovich 1957). In these experiments capillary forces were not
found to be important; however the gravity–capillary force balance has been studied
in detail by Bernis, Hulshof & King (2000), and similar experimental work to verify
these solutions could be conducted.

We then showed that with draining through the base of the layer, as may arise
in a stratified porous medium, the dipole moment decays exponentially. For such
flows we found that initially the loss of fluid from the current is dominated by the
drainage back into the source region x = 0, but at long times t > tc = (1/λ) ln (5/4),
the loss of fluid from the current is dominated by drainage into the underlying less
permeable layer. Further experiments in a Hele-Shaw cell were conducted and verified
the accuracy of this solution.

Finally we considered an extension of the modelling approach to describe a free-
surface gravity current slumping over an impermeable surface, and again obtained
very good agreement with experiments.
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Appendix
Here we present an alternative derivation of the dipole solution presented in § 2,

to show that the members of a family of solutions are consistent, each with integral
moments as conserved quantities. From these, the solutions with either (i) first moment
conserved or (ii) the volume conserved reduce the integral equation for the shape
function to a simpler form amenable to analytic solution.

If we again consider a similarity solution

h = Atαf

(
x

Btβ

)
, (A 1)

to the governing equation (2.1), then we obtain the differential equation

αf − βηf ′ = (ff ′)′, (A 2)

where the prime denotes differentiation by the similarity variable. We also obtain one
constraint on α and β that

2β = α + 1. (A 3)

We can now make progress on equation (A 2), by multiplying by η−α/β−1, and
integrating by parts twice to obtain

η−α/βf = η−α/β−1ff ′+
1

2

(
α

β
+ 1

)
η−α/β−2f 2+

1

2

(
α

β
+ 1

)(
α

β
+ 2

)∫ η

0

ξ−α/β−3f 2 dξ,

(A 4)
where we have used the boundary conditions

η−α/β−1ff ′ = 0 at η = 0, (A 5)

(
α

β
+ 1

)
η−α/β−2f 2 = 0 at η = 0. (A 6)

Equation (A 4) describes the shape function of the solution for any choice of α and
β that is consistent with the relation (A 3) above. However, two particular choices
for α and β allow us to dispense with the integral term in equation (A 4) and find a
solution for the shape function in closed form without the need for further boundary
conditions. These are α/β = −1, which corresponds to the volume conservative
current, and α/β = −2, which corresponds to the current with first dipole moment
conserved.
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